Exercise 62

(a) Sketch the graph of the function $g(x)=x+|x|$.
(b) For what values of x is g differentiable?
(c) Find a formula for g^{\prime}.

Solution

Use the definition of the derivative to find g^{\prime}.

$$
\begin{aligned}
& g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{[(x+h)+|x+h|]-(x+|x|)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h+|x+h|-x-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{h}{h}+\frac{|x+h|-|x|}{h}\right) \\
& =1+\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =1+\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}}-\sqrt{x^{2}}}{h} \\
& =1+\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}}-\sqrt{x^{2}}}{h} \cdot \frac{\sqrt{(x+h)^{2}}+\sqrt{x^{2}}}{\sqrt{(x+h)^{2}}+\sqrt{x^{2}}} \\
& =1+\lim _{h \rightarrow 0} \frac{(x+h)^{2}-\left(x^{2}\right)}{h\left[\sqrt{(x+h)^{2}}+\sqrt{x^{2}}\right]} \\
& =1+\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h\left[\sqrt{(x+h)^{2}}+\sqrt{x^{2}}\right]} \\
& =1+\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h\left[\sqrt{(x+h)^{2}}+\sqrt{x^{2}}\right]} \\
& =1+\lim _{h \rightarrow 0} \frac{2 x+h}{\sqrt{(x+h)^{2}}+\sqrt{x^{2}}} \\
& =1+\frac{2 x}{\sqrt{(x)^{2}}+\sqrt{x^{2}}} \\
& =1+\frac{2 x}{2 \sqrt{x^{2}}}=1+\frac{x}{\sqrt{x^{2}}}=1+\frac{x}{|x|}=1+\operatorname{sgn} x
\end{aligned}
$$

$g(x)=x+|x|$ is not differentiable at 0 because there's $|x|$ in the denominator, and for any rational function the denominator cannot be zero.

$$
\begin{gathered}
|x| \neq 0 \\
x \neq 0
\end{gathered}
$$

The domain of $g^{\prime}(x)$ is $\{x \mid x \neq 0\}$. Below is a graph of $g(x)$ versus x.

Below is a graph of $g^{\prime}(x)$ versus x.

